
SUSY transformations between diagonalizable and non-diagonalizable Hamiltonians

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 L397

(http://iopscience.iop.org/0305-4470/38/21/L04)

Download details:

IP Address: 171.66.16.66

The article was downloaded on 02/06/2010 at 20:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) L397–L403 doi:10.1088/0305-4470/38/21/L04

LETTER TO THE EDITOR

SUSY transformations between diagonalizable
and non-diagonalizable Hamiltonians

Boris F Samsonov

Department of Physics, Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia

Received 8 March 2005, in final form 12 April 2005
Published 10 May 2005
Online at stacks.iop.org/JPhysA/38/L397

Abstract
Recently (Samsonov B F and Roy P 2005 J. Phys. A: Math. Gen. 38 L249) an
explicit example of a PT -symmetric non-diagonalizable Hamiltonian has been
given. In this letter we show that such Hamiltonians appear as supersymmetric
(SUSY) partners of Hermitian (hence diagonalizable) Hamiltonians and
can be transformed back to diagonalizable forms by appropriate SUSY
transformations.

PACS numbers: 11.30.Pb, 45.20.Jj

It is well known that there exist non-Hermitian Hamiltonians which cannot be reduced
to a diagonal form by changing the basis (so-called non-diagonalizable Hamiltonians, see
e.g. [1]). To illustrate better our ideas we will consider here only regular Sturm–Liouville
problems. The set of eigenfunctions of a non-diagonalizable Hamiltonian is not complete in
the corresponding Hilbert space [2, 3]. The characteristic determinant has multiple roots.
Together with any eigenfunction with a simple eigenvalue coinciding with a multiple root of
the characteristic determinant, there exists a set of associated functions [2, 3]. The linear
hull of eigenfunction and associated functions corresponding to a given value of the energy
forms the root subspace (see e.g. [3]). Recently an explicit example of an exactly solvable
PT -symmetric non-diagonalizable Hamiltonian has been given [4].

We have discovered that supersymmetry (SUSY) transformations may convert a Hermitian
(hence diagonalizable) Hamiltonian to a non-diagonalizable Hamiltonian, which in particular
may possess the PT symmetry, and vice versa: a possibility which does not appear in the
linear algebra. It is related to the possibility of ‘creating’ by SUSY transformations more
than one ‘bound state’ at a given non-degenerate value of the energy. Since the energy
level is non-degenerate the other state cannot be an eigenfunction of the Hamiltonian but it
can be an associated function. In the opposite process, when we ‘delete’ an eigenfunction
having a non-zero associated function, the associated function is transformed to a ‘real
eigenfunction’. It appears it ‘emerges from background’ and therefore it may be called
‘background eigenfunction’.

We have found that the possibility described above appears if second order SUSY
transformations or higher are used. It is well known (see e.g. [5]) that there exists a strong
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relation between conventional supersymmetric quantum mechanics (SUSY QM, also known in
the literature as Witten’s SUSY QM), first order Darboux transformations of the Schrödinger
equation and Schrödinger’s factorization method. We note that higher order extension of
Witten’s SUSY QM first appeared in [6]. But only after a strong relation between higher order
Darboux transformations, factorization of polynomials of one-dimensional Hamiltonians and
polynomial supersymmetries of quantum systems was established [7] did the method become
an efficient tool in different fields of theoretical and mathematical physics (see recent reviews
[8]). In this letter we use the term SUSY transformation in its narrow sense as a differential
transformation between two exactly solvable Hamiltonians having almost the same (up to
a finite number of levels) spectra, and here we briefly review the main properties of these
transformations (for details see [7]) we need below. Once such a transformation is found,
one can always construct super-Hamiltonian and nilpotent mutually conjugated supercharges.
These operators close superalgebra (in general a polynomial superalgebra) [8, 7].

Let us consider two ordinary second order differential equations

(h0 − E)ψE(x) = 0 h0 = −∂2
x + V0(x) x ∈ [a, b] (1)

(h1 − E)ϕE(x) = 0 h1 = −∂2
x + V1(x) x ∈ [a, b] (2)

with a and b being finite numbers. We say that the Hamiltonian h1 is related to h0 by a second
order SUSY transformation if there exists a second order differential operator L intertwining
h0 and h1:

Lh0 = h1L. (3)

Once such an operator is found, solutions of equation (2) can be found by applying L to
solutions of (1),

ϕE = LψE ψE /∈ ker L.

Any second order (in general nth order) intertwining operator may be presented as a
superposition of some first order intertwining operators. This means that the second
order transformation can always be decomposed into a sequence (or chain) of two first
order transformations, but only if this chain is completely reducible can one associate a
supersymmetric model with every intermediate Hamiltonian of the chain. However, a quadratic
supersymmetry can always be associated with h0 and h1 if L is a second order differential
operator. Second order SUSY transformations we will use below are irreducible and therefore
there is now way to associate a supersymmetric model with the intermediate Hamiltonian.
We will not go into further details about unusual supersymmetric properties related to second
order (in general nth order) intertwining operators since this subject is not our main objective
and we refer the interested reader to the original [5, 7, 9] and review [8] papers.

Coefficients before the derivative operators in L and the function V1 should be found from
the system of differential equations to which the intertwining relation (3) is reduced. It is
remarkable that this system can be completely integrated but the result has a different form
depending on the choice of the integration constants. One distinguishes the confluent case,
when two integration constants (denoted by α1 and α2 below) coincide, from the general case,
when they are different. Here we will consider only the latter possibility. Then for the function
V1 one gets

V1 = V0 − 2[log W(u1, u2)]
′′. (4)

The solution of equation (2) is given by

ϕE = LψE = W(u1, u2, ψE)/W(u1, u2). (5)



Letter to the Editor L399

Here W(u1, u2) and W(u1, u2, ψE) are 2 × 2 and 3 × 3 Wronskians, and u1, u2 and ψE are
solutions to equation (1) corresponding to the eigenvalues α1, α2

h0u1,2 = α1,2u1,2 (6)

and E respectively. α1 and α2 are just the integration constants mentioned above and therefore
no restrictions are imposed on them except for α1 �= α2. Two other integration constants are
hidden in the functions u1 and u2 since for a given value of α1 (and α2) equation (6) has two
linearly independent solutions. Expressions (4) and (5) are particular cases of a general result
known in the literature as Crum–Krein formulae [10].

Formula (5) defines the operator L for any sufficiently smooth function ψE but if ψE is a
solution to equation (1) other forms of this equation are useful,

ϕE = (E − α2)ψE + (α1 − α2)
W(u2, ψE)

W(u1, u2)
u1 (7)

= (E − α1)ψE + (α1 − α2)
W(u1, ψE)

W(u1, u2)
u2. (8)

Here the use of equations (6) and (1) has been made to express the second derivatives of the
functions u1, u2 and ψE in terms of the functions themselves. Operator L as given in (7) and (8)
maps any two-dimensional space of solutions of equation (1) with the given E �= α1, α2 onto
the corresponding space of solutions of equation (2). The two-dimensional space span{u1, u2}
is the kernel of L,Lu1,2 = 0. Despite this with the help of L one can find solutions of
equation (2) corresponding to E = α1, α2. For this purpose it is necessary to operate with L
on the functions

ũ1,2 �= u1,2 h0ũ1,2 = α1,2ũ1,2.

Using the fact that W(u1,2, ũ1,2) = const and putting ψE = ũ1,2, E = α1,2 in (7) and (8) one
readily gets

ϕα1,2 = u2,1

W(u1, u2)
h1ϕα1,2 = α1,2ϕα1,2 (9)

where we have omitted an inessential constant factor. It is worth noting that the use of these
functions for the next step of transformation gives back the initial Hamiltonian h0 and hence,
the procedure is completely reversible. Our last comment is that (as follows from (4)) for
getting non-singular potential differences for x ∈ (a, b) it is necessary that W(u1, u2) �= 0
which will be supposed to be the case.

The properties described above take place irrespective of any boundary value problem
related to differential equations (1) or (2). Here using the simplest boundary conditions
defining h0 and h1 as operators acting in the Hilbert space L2(a, b) (we will use the same
symbols h0 and h1 for these operators) we show that a special choice of transformation
functions u1 and u2 permits us to transform a Hermitian Hamiltonian h0 into non-Hermitian
non-diagonalizable h1. Conversely, the inverse transformation converts non-Hermitian and
non-diagonalizable h1 into Hermitian h0.

Let us suppose V0(x) to be a real-valued and sufficiently smooth function for x ∈ [a, b].
Consider two boundary value problems, which we will denote (I) and (II) respectively, defined
by equations (1) and (2) and the boundary conditions

ψE(a) = ψE(b) = 0 (10)

ϕE(a) = ϕE(b) = 0. (11)
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It is well known (see e.g. [11]) that the problem (I) has only a discrete, simple and real spectrum
of eigenvalues E = En, n = 0, 1, 2, . . . .

We will now formulate conditions for u1 and u2 leading to a complex-valued V1(x) given
by (4), and the problem (II) has a real and simple spectrum coinciding with the spectrum of
the problem (I) except for one level and if the Hamiltonian h1 is non-diagonalizable.

It is clear from (7) and (8) that if both u1 (or equivalently u2) and ψE , E �= α1, α2,
satisfy the boundary conditions (10) then ϕE satisfies the boundary conditions (11). The only
possibility for u1 to satisfy the zero boundary conditions is to be an eigenfunction of h0,
u1 = ψEk

, so that it is (up to an inessential phase factor) real and α1 = Ek , which we shall
suppose to be fixed. This means that the Hamiltonian h1 has the same spectrum as h0 except
maybe for the values E = α1, α2 but since u1 = ψEk

satisfies the boundary conditions (10),
the function ϕα2 given in (9) is an eigenfunction of h1 and E = α2 is the spectral point for h1.
Recalling that we want to keep the real character of the spectrum of h1, we have to choose α2

real also. So, we choose both α1 and α2 to be real and the function u1 = ψEk
is fixed to be

real also but we want to get a complex potential V1 defined by equation (4). This is possible if
u2 is a complex linear combination of two real linearly independent solutions of equation (1).
Let α2 ( �=α1) also coincide with a spectral point El ( �=Ek) of h0,

α2 = El u2 = ψEl
+ icψ(2)

El
c ∈ R (12)

where ψEl
satisfies the boundary conditions (10) and ψ

(2)
El

is any real solution of equation (1)
at E = El linearly independent of ψEl

. We note that u2(x) �= 0∀x ∈ (a, b) and for c �= 0 it
cannot vanish at both bounds of the interval [a, b].

We claim that if u1 and u2 are chosen as described above, the potential V1 as given in (4)
has a spectrum coinciding with the spectrum of V0 except for the level E = α1 = Ek which
is removed. At the energy E = α2 = El except for an eigenfunction of h1, ϕEl

, there exists
an associated function χEl

(see e.g. [2, 3] and also [4]) which we will also call ‘background
eigenfunction’, which means that h1 is non-diagonalizable. It satisfies the inhomogeneous
equation

(h1 − El)χEl
= ϕEl

χEl
(a) = χEl

(b) = 0 (13)

and also the homogeneous one with the squared Hamiltonian

(h1 − El)
2χEl

= 0 χEl
(a) = χEl

(b) = 0 χEl
�= ϕEl

. (14)

We would like to stress that the set {ϕn}, n = 0, 1, 2, . . . , n �= k (Ek is ‘removed’), is not
complete in {L2(a, b). To have a complete set one has to add to this set the function χEl

[2, 3].
As was already pointed out, all spectral points En, n �= k, l, of h0 are also spectral points

of h1. So, to prove our claim it remains to analyse only the points E = α1 = Ek and
E = α2 = El .

One of the solutions ϕ
(1)
Ek

= ϕα1 of the Schrödinger equation (2) with E = α1 = Ek is
given by (9) from which and the property that the function (12) cannot vanish at both bounds
of the interval [a, b], it follows that ϕ

(1)
Ek

(x) does not vanish at both bounds of this interval. A
solution of the Schrödinger equation (2) vanishing at one of the bounds, for instance at x = a

ϕ
(2)
Ek

(x) = ϕ
(1)
Ek

(x)

∫ x

a

1[
ϕ

(1)
Ek

(y)
]2 dy (15)

does not vanish at the other bound. This means that E = α1 = Ek is not a spectral point of
h1. To get a solution of the Schrödinger equation at E = α2 = El one can use formula (7)
with ψE = ψEl

(/∈ ker L) which gives us the function ϕEl
satisfying boundary conditions (11),



Letter to the Editor L401

which means (as was already mentioned) that E = El is the spectral point for h1. Now we
intend to prove that the Hamiltonian h1 is non-diagonalizable.

Let us consider the solution ψr(E, x) of equation (1) fixed by the conditions

ψr(E, b) = 0 ψ ′
r (E, b) = 1.

(We denote by prime the derivative with respect to x.) According to (7) the function

ϕr(E, x) = 1

E − α1
Lψr(E, x)

is such that

ϕr(E, b) = 0 ϕ′
r (E, b) = 1

and

ϕr(E, a) = E − α2

E − α1
ψr(E, a). (16)

Recalling that ψr(E, a) as a function of E is an analytic function having only simple zeros
at the points of the spectrum of h0 (see e.g. [11]) and in particular at E = α1 = Ek and
E = α2 = El , we conclude that ϕr(E, a) is also analytic, ϕr(α2, a) = 0 and this zero is
double, but ϕr(α1, a) �= 0. The last inequality confirms us once again that E = α1 is not a
spectral point for h1 but the fact the zero E = α2 is double says that h1 is non-diagonalizable
and together with the eigenfunction ϕEl

(x) = LψEl
(x) ∼ ϕr(El, x) there exists an associated

function

χEl
= (∂ϕE/∂E)E=El

(see e.g. [2, 3]). It is evident that χEl
(a) = χEl

(b) = 0 and equation (13) it satisfies can be
obtained by taking the derivative of equation (2) with respect to E. Since ϕE = LψE and L as
given in (5) is independent of E, one has

χEl
= Lψ̃El

ψ̃El
= (∂ψE/∂E)E=El

.

The function ψ̃El
satisfies the equation

(h0 − El)ψ̃El
= ψEl

but it does not satisfy boundary conditions (10) which agrees with the fact that h0 is a
diagonalizable Hamiltonian. Operator L (5) transforms ψ̃El

into a solution to equation (13)
satisfying the zero boundary conditions, thus transforming it into a ‘background eigenfunction’
of h1. We also note that the functions ϕEl

and χEl
form a (non-orthogonal with respect to the

usual L2(a, b) inner product) basis in the two-dimensional root subspace of h1 corresponding
to E = El and the function

[
∂
∂E

ϕr(E, x)
]
E=El

belongs to this subspace.
In contrast to the usual SUSY scheme the opposite process, i.e. the ‘deletion’ of the

level E = El does not actually delete this level. If we take the Hamiltonian h1 as the
initial Hamiltonian for the next second order transformation, leading to the Hamiltonian h2,
and choose one of the transformation functions defining the transformation operator L(2) of
the next step to be equal to ϕEl

, actual eigenfunction at E = El is deleted but the associated
function χEl

‘comes out of the background’ and becomes a true eigenfunction of h2 at E = El .
This statement is readily verified if one acts by L(2), which is constructed in a similar way
as L = L(1) given in (5) and intertwines now h1 and h2, on both sides of (13), takes into
account the intertwining relation L(2)h1 = h2L

(2) and the property L(2)ϕEl
= 0. If the non-

diagonalizable Hamiltonian h1 has only one associated function, it is transformed in this way
into a diagonalizable h2.
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The simplest example illustrating the possibilities described above is the boundary value
problem with the zero initial potential V0(x) = 0. We will choose a = −π and b = π . The
solutions of the boundary value problem (I) are well known, for instance, its discrete spectrum
is E = En = 1

4n2, n = 1, 2, . . . .
Let us choose

u1 = sin(Ax) u2 = exp(−iBx) A,B ∈ R.

Formula (4) gives us the following PT -symmetric Hamiltonian:

V1 = 2A2(A2 − B2)

[cos(Ax) − iB sin(Ax)]2
. (17)

For A = 1 the function u1 coincides with the first excited state of h0 and for B �= n/2
this potential is diagonalizable with the spectrum E = En = 1

4n2, n = 1, 3, 4, 5, . . . and
Eα2 = B2. For B = 2 the function u2 is a complex linear combination of the fourth excited
state and another solution of equation (1) with V0(x) = 0 at the same energy and the level
Eα2 merges with the existing level E = 4 which ‘goes to background’. The potential (17)
becomes non-diagonalizable with the discrete spectrum E = En = 1

4n2, n = 1, 3, 4, 5, . . .,
studied in detail in [4].

Now we would like to illustrate the possibility of transforming the non-diagonalizable
potential (17) at A = 1 and B = 2 into a diagonalizable one. We choose V1 as the initial
potential and take u1 = ϕ4 and u2 = ϕleft where ϕleft is such that ϕleft(−π) = 0. This yields
the following potential:

V2 = (κ2 − 1)[κ2 − 1 − κ2 cos(2x) + cos(2κx + 2κπ)]

[κ cos(κx + κπ) sin x − sin(κx + κπ) cos x]2
κ �= 1 (18)

where we denoted α2 = κ2. It is regular ∀x ∈ (−π, π) provided 0.5 � κ � 1.5, κ �= 1
and has the spectrum E = En = n2

4 , n = 1, 3, 4 . . . and E = α2 = κ2. For κ = 1,
ϕleft = Lψleft = 0 and to realize the transformation with α2 = 1 one has to use solutions
obtained with the help of formula (9) as transformation functions. This corresponds to the
backward transformation from V1 to V0 = 0 and hence one gets V2 = 0. For real κ the
potential (18) is real and corresponds to the Hermitian (hence diagonalizable) Hamiltonian
h2 = −∂2

x + V2. So, we have transformed the non-diagonalizable Hamiltonian h1 to the
diagonalizable h2. One can also transform h1 into a non-Hermitian diagonalizable h2 by
choosing a complex linear combination of two linearly independent solutions of equation (2)
corresponding to the same value of E = α2 as transformation function u2.

Our last example is related to the possibility of enlarging the root subspace corresponding
to E = 4 of the potential (17) at A = 1 and B = 2 from dimension 2 to dimension 3. To this
end we take

u1 = ϕE1 u2 = 9 − e−2ix

1 − 3 e2ix

which yields the potential

V2 = 6
25 eix + 324 e2ix + 1350 e3ix + 2500 e4ix + 2025 e5ix

(3 + 25 eix + 81 e2ix + 75 e3ix)2
.

It has the spectrum E = n2

4 , n = 3, 4, 5, . . . .
We hope that the possibility of transforming non-diagonalizable PT -symmetric

Hamiltonians to diagonalizable forms may find application in complex quantum mechanics
which is currently under development.
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